题目内容
【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t等于多少秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z.
【答案】(1)点E的坐标是(﹣2,0);(2)①当t=2秒时,点P的横坐标与纵坐标互为相反数;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③能确定,z=x+y.
【解析】
(1)根据平移的性质即可得到结论;
(2)①由点C的坐标为(﹣3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;
②分两种情况讨论:当点P在线段BC上时;当点P在线段CD上时;
③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.
(1)根据题意,可知:三角形OAB沿x轴负方向平移3个单位得到三角形DEC.
∵点A的坐标是(1,0),∴点E的坐标是(﹣2,0).
(2)①∵点C的坐标为(﹣3,2),∴BC=3,CD=2.
∵点P的横坐标与纵坐标互为相反数,∴点P在线段BC上,∴PB=CD,即t=2,∴当t=2秒时,点P的横坐标与纵坐标互为相反数.
②当点P在线段BC上时,点P的坐标(﹣t,2);
当点P在线段CD上时,点P的坐标(﹣3,5﹣t);
③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.
【题目】有这样一个问题:
计算代数式(其中x≠0)的值后填入下表.并根据表格所反映出的(其中x≠0)的值与x之间的变化规律进行探究.
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | …… |
下面是小东计算代数式(其中x≠0)的值后填入表格,并根据表格进行探究的过程,请补充完整:
x | …… | 0.25 | 0.5 | 1 | 10 | 100 | 1000 | 10000 | …… |
…… | 2 | 1 | …… |
(1)上表是(其中x≠0)与x的几组对应值.直接写出x=10时,求代数式的值;
(2)随着x值的增大,代数式的值有何变化(回答“增大”或“减少”);
(3)当x值无限增大时,代数式的值无限趋近于一个数,这个数是多少.