题目内容
【题目】阅读下列材料,然后解答问题:
分解因式:x3+3x2-4.
解答:把x=1代入多项式x3+3x2-4,发现此多项式的值为0,由此确定多项式x3+3x2-4中有因式(x-1),于是可设x3+3x2-4=(x-1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多项式x3+3x2-4.这种分解因式的方法叫“试根法”.
(1)求上述式子中m,n的值;
(2)请你用“试根法”分解因式:x3+x2-16x-16.
【答案】(1)m=4,n=4;(2)(x+1)(x+4)(x-4).
【解析】
(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;
(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.
(1)原式=(x-1)(x2+mx+n)
=x3+mx2+nx-x2-mx-n
=x3+(m-1)x2+(n-m)x-n,
根据题意得 解得;
(2)把x=-1代入,发现多项式的值为0,
∴多项式x3+x2-16x-16中有因式(x+1),
于是可设x3+x2-16x-16=(x+1)(x2+mx+n),
可化为x3+mx2+nx+x2+mx+n=x3+(m+1)x2+(m+n)x+n,
可得,解得
∴x3+x2-16x-16=(x+1)(x2-16)=(x+1)(x+4)(x-4).
练习册系列答案
相关题目