题目内容
【题目】定义:如图1,在平面直角坐标系中,点M是二次函数图象上一点,过点M作轴,如果二次函数的图象与关于l成轴对称,则称是关于点M的伴随函数如图2,在平面直角坐标系中,二次函数的函数表达式是,点M是二次函数图象上一点,且点M的横坐标为m,二次函数是关于点M的伴随函数.
若,
求的函数表达式.
点,在二次函数的图象上,若,a的取值范围为______.
过点M作轴,
如果,线段MN与的图象交于点P,且MP::3,求m的值.
如图3,二次函数的图象在MN上方的部分记为,剩余的部分沿MN翻折得到,由和所组成的图象记为.以、为顶点在x轴上方作正方形直接写出正方形ABCD与G有三个公共点时m的取值范围.
【答案】的函数表达式为, ;
或, 当或时,G与正方形ABCD有三个公共点.
【解析】
根据题意,当时,可得到抛物线的顶点为,再用顶点式写出函数表达式即可;
由点,在二次函数的图象上,得到,再根据,可得a的取值范围;
由轴,MP::3,得到,然后根据当m>0和m<0时,分情况讨论即可得到答案;
通过分别分析当m=,1,,2值,得到正方形与G的公共点数,从而得到正方形与G有三个公共点时m的取值范围.
当时,抛物线与抛物线关于直线对称,
抛物线的顶点是,
抛物线的解析式为;
点,在二次函数的图象上,
∴,
当时,,
解得:,
故答案为:;
轴,MP::3,
∴,
当时,,,
当时,,,
故或;
分析图象可知:
当时,可知C1和G的对称轴关于直线对称,的顶点恰在AD上,此时G与正方形有2个公共点,
当时,G与正方形ABCD有三个公共点,
当时,直线MN与x轴重合,G与正方形有三个公共点,
当1<m<时,G与正方形ABCD有五个公共点,
当m=时,G的顶点与点C(3,2)重合,且G对称轴左侧部分与正方形有三个公共点,
当<m<2时,G与正方形ABCD有四个个公共点,
当时,G过点且G对称轴左侧部分与正方形有两个公共点,
故当或时,G与正方形ABCD有三个公共点.