题目内容

【题目】如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于(
A.20°
B.35°
C.40°
D.55°

【答案】A
【解析】解:∵圆内接四边形ABCD的边AB过圆心O, ∴∠ADC+∠ABC=180°,∠ACB=90°,
∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,
∵过点C的切线与边AD所在直线垂直于点M,
∴∠MCA=∠ABC=55°,∠AMC=90°,
∵∠ADC=∠AMC+∠DCM,
∴∠DCM=∠ADC﹣∠AMC=35°,
∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°;
故选:A.
【考点精析】掌握圆内接四边形的性质和切线的性质定理是解答本题的根本,需要知道把圆分成n(n≥3):1、依次连结各分点所得的多边形是这个圆的内接正n边形2、经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网