题目内容

【题目】如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D
(1)求证:直线AE是⊙O的切线.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的长.

【答案】
(1)证明:连接BD,

∵AB是⊙O的直径,

∴∠ADB=90°,

即∠ADC+∠CDB=90°,

∵∠EAC=∠ADC,∠CDB=∠BAC,

∴∠EAC+∠BAC=90°,

即∠BAE=90°,

∴直线AE是⊙O的切线;


(2)解:∵AB是⊙O的直径,

∴∠ACB=90°,

Rt△ACB中,∠BAC=30°,

∴AB=2BC=2×4=8,

由勾股定理得:AC= =4

Rt△ADB中,cos∠BAD= =

∴AD=6,

∴BD= =2

∵∠BDC=∠BAC,∠DFB=∠AFC,

∴△DFB∽△AFC,

∴BF=


【解析】(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得: ,得出结论.
【考点精析】利用解直角三角形对题目进行判断即可得到答案,需要熟知解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网