题目内容
如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积是( )
A、1 | B、2 | C、3 | D、4 |
分析:求△ADE的面积,已知底AD=3,过E作EF垂直于AD交AD的延长线于F,EF就是高,然后再找和高相等的等量关系,三角形EDF全等于三角形CDG,EF=CG=2,则△ADE的面积就能求出来.
解答:解:过点D作DG垂直于BC于G,过E作EF垂直于AD交AD的延长线于F,
∵∠EDF+∠CDF=90°,∠CDF+∠CDG=90°,
∴∠EDF=∠CDG,
又∵∠EFD=∠CGD=90°,DE=DC,
∴△EDF≌△CDG(AAS),
∴EF=CG,
∴CG=BC-BG=5-3=2,
∴EF=2,
∴S△ADE=
×AD×EF=
×3×2=3.
故选C.
∵∠EDF+∠CDF=90°,∠CDF+∠CDG=90°,
∴∠EDF=∠CDG,
又∵∠EFD=∠CGD=90°,DE=DC,
∴△EDF≌△CDG(AAS),
∴EF=CG,
∴CG=BC-BG=5-3=2,
∴EF=2,
∴S△ADE=
1 |
2 |
1 |
2 |
故选C.
点评:本题需要把旋转的性质、三角形的面积公式结合求解.考查学生综合运用数学知识的能力.注意旋转变化前后,对应角相等.
练习册系列答案
相关题目