题目内容

【题目】(1)问题发现

如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.

(1)①求的值;②求∠ACD的度数.

(2)拓展探究

如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.

(3)解决问题

如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.

【答案】(1)1,45°;(2)∠ACD=∠B, =k;(3).

【解析】

(1)根据已知条件推出ABP≌△ACD,根据全等三角形的性质得到PB=CD,ACD=B=45°,于是得到

根据已知条件得到△ABC∽△APD,由相似三角形的性质得到得到 ABP∽△CAD,根据相似三角形的性质得到结论;

AAHBC H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.

(1)∵∠A=90°,

AB=AC,

∴∠B=45°,

∵∠PAD=90°,APD=B=45°,

AP=AD,

∴∠BAP=CAD,

在△ABP 与△ACD 中,

AB=AC, BAP=CAD,AP=AD,

∴△ABP≌△ACD,

PB=CD,ACD=B=45°,

=1,

(2)

∵∠BAC=PAD=90°,B=APD,

∴△ABC∽△APD,

∵∠BAP+PAC=PAC+CAD=90°,

∴∠BAP=CAD,

∴△ABP∽△CAD,

∴∠ACD=B,

(3)过 A AHBC H,

∵∠B=45°,

∴△ABH 是等腰直角三角形,

AH=BH=4,

BC=12,

CH=8,

PH==3,

PB=1,

∵∠BAC=PAD=,B=APD,

∴△ABC∽△APD,

,

∵∠BAP+PAC=PAC+CAD,

∴∠BAP=CAD,

∴△ABP∽△CAD,

A AHBC H,

∵∠B=45°,

∴△ABH 是等腰直角三角形,

AH=BH=4,

BC=12,

CH=8,

PH==3,

PB=7,

∵∠BAC=PAD=,B=APD,

∴△ABC∽△APD,

∵∠BAP+PAC=PAC+CAD,

∴∠BAP=CAD,

∴△ABP∽△CAD,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网