题目内容

【题目】如图所示,的直径,弦的平分线交于E,且.

1)求的长

2)图中还有一条线段的长是否能确定,若能求出的长。

【答案】(1);(2)

【解析】

1)先根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙OD,判断出△ADB为等腰直角三角形,然后根据勾股定理求出具体值.

2)过EEFACFEGBCGFG是垂足,则四边形CFEG是正方形,设EF=EG=x,由三角形面积公式可求出x的值,及CE的值,根据△ADE∽△CBE,根据相似比可求出DE的长,进而求出CD的长.

1)∵AB是直径
∴∠ACB=ADB=90°
RtABC中,AB2=AC2+BC2AB=10cmAC=6cm
BC2=AB2-AC2=102-62=64
BC==8cm
又∵CD平分∠ACB
∴弧AD=BD
AD=BD
又∵在RtABD中,AD2+BD2=AB2
AD2+BD2=102
AD=BD==5cm).
2)过EEFACFEGBCGFG是垂足,则四边形CFEG是正方形,

EF=EG=x

ACx+BCx=ACBC

×6x+×8×x=×6×8

x=

CE= x=

∵∠DAB=DCB

∵△ADE∽△CBE

DE:BE=AE:CE=AD:BC

DE:BE=AE: =5:8

AE=,BE=ABAE=10=

DE=

CD=CE+DE=+=7 (cm).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网