题目内容
【题目】如图,二次函数的图象交轴于点,点,交轴于点
(1)求二次函数的解析式;
(2)连接,在直线上方的抛物线上有一点,过点作轴的平行线,交直线于点,设点的横坐标为,线段的长为,求关于的函数关系式;
(3)若点在轴上,是否存在点,使以、、为顶点的三角形是等腰三角形,若存在,直接写出点的坐标;若不存在,说明理由.
【答案】(1)y=-x2-x+2;(2)l=-n2-2n;(3)存在,(-1,0)或(1+,0)或(1-,0)或(-,0).
【解析】
(1)利用交点式求二次函数的解析式;
(2)设点N(n,-n2-n+2),则点F(n,n+2),l=-n2-n+2-(n+2)=-n2-2n;
(3)分CB=CM、BC=BM、BM=CM三种情况,分别求解即可.
解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),
设二次函数的解析式为:y=a(x+2)(x-1),
把C(0,2)代入得:2=a(0+2)(0-1),
a=-1,
∴y=-(x+2)(x-1)=-x2-x+2,
故抛物线的表达式为:y=-x2-x+2;
(2)设直线AC的解析式为:y=kx+b,
把A(-2,0)、C(0,2)代入得: ,
解得: ,
∴直线AC的解析式为:y=x+2,
设点N(n,-n2-n+2),则点F(n,n+2),
l=-n2-n+2-(n+2)=-n2-2n;
(3)存在,分三种情况:
①如图2,当BC=CM1时,M1(-1,0);
②如图2,由勾股定理得:BC= ,
以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,
此时,M2(1-,0),M3(1+,0);
③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,
设OM4=x,则CM4=BM4=x+1,
由勾股定理得:22+x2=(1+x)2,
解得:x=,
∵M4在x轴的负半轴上,
∴M4(-,0),
综上,点M的坐标为:(-1,0)或(1+,0)或(1-,0)或(-,0).