题目内容
【题目】如图,四边形是矩形纸片,.对折矩形纸片,使与重合,折痕为;展平后再过点折叠矩形纸片,使点落在上的点,折痕与相交于点;再次展平,连接,,延长交于点.以下结论:①;②;③;④△是等边三角形; ⑤为线段上一动点,是的中点,则的最小值是.其中正确结论的序号是( ).
A. ①②④B. ①④⑤C. ①③④D. ①②③⑤
【答案】B
【解析】
先证明BN=2BE,推出∠ENB=30°,∠ABN=60°,△BMG为等边三角形,可计算出AM、QN的长度。H关于BM的对称点是E,的最小值即为EN的长度。一一判断即可.
解:在Rt△BEN中,∵BN=AB=2BE,
∴∠ENB=30°,
∴∠ABN=60°,故①正确,
∴∠ABM=∠NBM=∠NBG=30°,
∴AM=ABtan30°=,故②错误,
∵∠AMB=∠BMN=60°,
∵AD∥BC,
∴∠GBM=∠AMB=60°,
∴∠MBG=∠BMG=∠BGM=60°,
∴△BMG为等边三角形,故④正确.
∴BG=BM=2AM=,
∵EF∥BC∥AD,AE=BE,
∴BQ=QM,MN=NG,
∴QN是△BMG的中位线,
∴QN=BG=,故③不正确.
连接PE.∵BH=BE=1,∠MBH=∠MBE,
∴E、H关于BM对称,
∴PE=PH,
∴PH+PN=PE+PN,
∴E、P、N共线时,PH+PN的值最小,最小值=EN=,故⑤正确,
故选:B.
练习册系列答案
相关题目