题目内容
【题目】如图,点C为y轴正半轴上一点,点P(2,2)在直线y=x上,PD=PC,且PD⊥PC,过点D作直线AB⊥x轴于B,直线AB与直线y=x交于点A,直线CD与直线y=x交于点Q,当∠CPA=∠PDB时,则点Q的坐标是_____.
【答案】(2+2,2+2).
【解析】
过P点作x轴的平行线交y轴于M,交AB于N,如图,设C(0,t),OP=2,OM=BN=PM=2,CM=t﹣2,利用旋转性质得PC=PD,∠CPD=90°,再证明△PCM≌△DPN得到PN=CM=t﹣2,DN=PM=2,于是得到D(t,4),接着利用△OPC≌△ADP得到AD=OP=2,则A(t,4+2),于是利用y=x图象上点的坐标特征得到t=4+2,所以C(0,4+2),D(4+2,4),接下来利用待定系数求出直线CD的解析式为y=(1﹣)x+4+2,则通过解方程组可得Q点坐标.
解:过P点作x轴的平行线交y轴于M,交AB于N,如图,设C(0,t),
∴P(2,2),
∴OP=2,OM=BN=PM=2,CM=t﹣2,
∵PC=PD,PC⊥PD
∴PC=PD,∠CPD=90°,
∴∠CPM+∠DPN=90°,
而∠CPM+∠PCM=90°,
∴∠PCM=∠DPN,
在△PCM和△DPN中,
∴△PCM≌△DPN(AAS),
∴PN=CM=t﹣2,DN=PM=2,
∴MN=t﹣2+2=t,DB=2+2=4,
∴D(t,4),
∵∠COP=∠OAB=45°,∠CPQ=∠PDB,
∴∠CPO=∠PDA,
∴△OPC≌△ADP(AAS),
∴AD=OP=2,
∴A(t,4+2),
把A(t,4+2)代入y=x得t=4+2,
∴C(0,4+2),D(4+2,4),
设直线CD的解析式为y=kx+b,
把C(0,4+2),D(4+2,4)代入得,解得,
∴直线CD的解析式为y=(1﹣)x+4+2,
解方程组得,
∴Q(2+2,2+2).
故答案为(2+2,2+2).