题目内容
【题目】如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。
【答案】36
【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
连接AC,如图所示:
∵∠B=90°,
∴△ABC为直角三角形,
又∵AB=3,BC=4,
∴根据勾股定理得:AC= =5,
又∵CD=12,AD=13,
∴AD=13=169,CD+AC=12+5=144+25=169,
∴CD+AC=AD,
∴△ACD为直角三角形,∠ACD=90°,
则S四边形ABCD=S△ABC+S△ACD= ABBC+ACCD=×3×4+×5×12=36,
故四边形ABCD的面积是36
练习册系列答案
相关题目
【题目】有20筐橘子,以每筐20千克为标准,超过或不足的部分分别用正数或负数来表示,记录如下:
与标准重量的差(单位:千克) | -2 | -1.5 | -1 | 0 | 1 | 1.5 |
筐 数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)求最重的一筐比最轻的一筐重多少?
(2)求20筐橘子的总重量是多少千克?
【题目】某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的成绩如下表:
3 | 0 | 8 | 7 | 10 | 1 | 5 |
(1)求第二小队的总成绩;
(2)求第二小队的平均成绩。