题目内容
【题目】对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为( )
A.1+或1﹣B.1或﹣1C.1﹣或1D.1+或﹣1
【答案】D
【解析】
根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方程求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.
解:①当x≥﹣x,即x≥0时,
∵max{x,﹣x}=x2﹣x﹣1,
∴x=x2﹣x﹣1,
解得:x=1+(1﹣<0,不符合舍去);
②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,
解得:x=﹣1(1>0,不符合舍去),
即方程max{x,﹣x}=x2﹣x﹣1的解为1+或﹣1,
故选:D.
练习册系列答案
相关题目