题目内容
【题目】如图,已知,,,记,则________.
【答案】
【解析】
连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.
证明:连接AC,
设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∴∠CAE+4x°+∠ACE+4y°=180°,
∴∠CAE+∠ACE=180°(4x°+4y°),∠FAC+∠FCA=180°(3x°+3y°)
∴∠AEC=180°(∠CAE+∠ACE)
=180°[180°(4x°+4y°)]
=4x°+4y°
=4(x°+y°),
∠AFC=180°(∠FAC+∠FCA)
=180°[180°(3x°+3y°)]
=3x°+3y°
=3(x°+y°),
∴∠AFC=∠AEC.
即.
练习册系列答案
相关题目