题目内容

相山区实验中学数学兴趣小组在周末开展研究性学习,测算小桥所在圆的半径.他们发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上(如图),此时此刻,身高1.6米的海涛,测得自己的影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.
考点:相似三角形的应用,勾股定理,垂径定理的应用
专题:
分析:根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.
解答:解:∵海涛身高1.6米,测得其影长为2.4米,
∴8米高旗杆DE的影子为:12m,
∵测得EG的长为3米,HF的长为1米,
∴GH=12-3-1=8(m),
∴GM=MH=4m.
如图,设小桥的圆心为O,连接OM、OG.
设小桥所在圆的半径为r,
∵MN=2m,
∴OM=(r-2)m.
在Rt△OGM中,由勾股定理得:
∴OG2=OM2+42
∴r2=(r-2)2+16,
解得:r=5.
答:小桥所在圆的半径为5m.
点评:此题主要考查了垂径定理以及勾股定理的应用,根据已知得出关于r的等式是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网