题目内容
【题目】已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
【答案】
(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴ .
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴ .
∴ .
则AC=15(cm).
∴⊙O的半径是7.5cm
【解析】连接OD,先证明DO∥MN,根据DE⊥MN,证明OD⊥DE.可得出DE是⊙O的切线。
(2)根据已知易证得△ACD∽△ADE.由相似三角形的性质,得出对应边成比例,建立方程求得AC的长,即可求出结果。
【题目】某校学生会主席换届选举,经初选、复选后,共有甲,乙,丙三人进入最后的竞选,最后决定用投票方式进行选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人的得票数内,全校设有四个投票箱,目前第一、第二、第三投票箱已开完所有选票,剩下第四投票箱尚未开票,结果如表所示:单位:票
投票箱 | 候选人 | 废票 | 合计 | ||
甲 | 乙 | 丙 | |||
一 | 200 | 211 | 147 | 12 | 570 |
二 | 244 | 15 | 630 | ||
三 | 97 | 41 | 205 | 7 | 350 |
四 | 250 |
若第二投票箱候选人甲的得票数比乙的3倍还多31票,请分别求出第二投票箱甲、乙两名候选人的得票数.
根据题的数据分析,请判断乙侯选人是否还有机会当选,并详细解释或完整写出你的解题过程.
【题目】某商场对某种商品进行销售,第x天的销售单价为m元/件,日销售量为n件,其中m,n分别是x(1≤x≤30,且x为整数)的一次函数,销售情况如表:
销售第x天 | 第1天 | 第2天 | 第3天 | 第4天 | … | 第30天 |
销售单价m(元/件) | 49 | 48 | 47 | 46 | … | 20 |
日销售量n(件) | 45 | 50 | 55 | 60 | … | 190 |
(1)观察表中数据,分别直接写出m与x,n与x的函数关系式: , ;
(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?
(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?