题目内容

【题目】如图,在平面直角坐标系中,A,B两点分别在x轴和y轴上,OA=1,OB= ,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1 , 连接A1B1 , 再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点Cn的坐标为

【答案】
【解析】解:∵过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1

∴B1C1和C1A1是三角形OAB的中位线,

∴B1C1= OA= ,C1A1= OB=

∴C1的坐标为( ),

同理可求出B2C2= = ,C2A2= =

∴C2的坐标为( ),

…以此类推,

可求出BnCn= ,CnAn=

∴点Cn的坐标为

故答案为:

根据中位线定理先求出C1,、C2的坐标,从中找出规律,可求得Cn的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网