题目内容
【题目】如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法:①△ABD 和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的是( )
A. ①② B. ③⑤ C. ①③④ D. ①④⑤
【答案】C
【解析】
根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.
∵AD是△ABC的中线,
∴BD=CD,
∴△ABD和△ACD面积相等,故①正确;
∵AD为△ABC的中线,
∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;
在△BDF和△CDE中,
,
∴△BDF≌△CDE(SAS),故③正确;
∴∠F=∠DEC,
∴BF∥CE,故④正确;
∵△BDF≌△CDE,
∴CE=BF,故⑤错误,
正确的结论为:①③④,
故选C.
练习册系列答案
相关题目