题目内容

【题目】类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.

(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

【答案】
(1)

解:如图1

∵等对角四边形ABCD,∠A≠∠C,

∴∠D=∠B=80°,

∴∠C=360°﹣70°﹣80°﹣80°=130°;


(2)

解:①如图2,

连接BD,

∵AB=AD,

∴∠ABD=∠ADB,

∵∠ABC=∠ADC,

∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,

∴∠CBD=∠CDB,

∴CB=CD,

②不正确,

反例:如图3,∠A=∠C=90°,AB=AD,

但CB≠CD,


(3)

解:(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,

∵∠ABC=90°,∠DAB=60°,AB=5,

∴AE=10,

∴DE=AE﹣AD=10﹣4=6,

∵∠EDC=90°,∠E=30°,

∴CD=2

∴AC= = =2

(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,

∵DE⊥AB,∠DAB=60°AD=4,

∴AE=2,DE=2

∴BE=AB﹣AE=5﹣2=3,

∵四边形BFDE是矩形,

∴DF=BE=3,BF=DE=2

∵∠BCD=60°,

∴CF=

∴BC=CF+BF= +2 =3

∴AC= = =2


【解析】(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网