题目内容

【题目】已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)

(1)求该函数的关系式;

(2)求该函数图象与坐标轴的交点坐标;

(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求O A′B′的面积.

【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.

【解析】

1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式

(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标

(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于OA′B′不规则,可用面积割补法求出OA′B′的面积.

1)设抛物线顶点式y=a(x+1)2+4,

B(2,﹣5)代入得:a=﹣1,

∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;

(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),

y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,

即抛物线与x轴的交点为:(﹣3,0),(1,0);

(3)设抛物线与x轴的交点为M、N(MN的左侧),

由(2)知:M(﹣3,0),N(1,0),

当函数图象向右平移经过原点时,MO重合,因此抛物线向右平移了3个单位

A'(2,4),B'(5,﹣5),

SOA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网