题目内容
【题目】(1)如图1,在四边形中,,,、分别是边、上的点,若,可求得、、之间的数量关系为______.(只思考解题思路,完成填空即可,不必书写证明过程)
(2)如图2,在四边形中,,,、分别是边、延长线上的点,若,判断、、之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.(可借鉴第(1)问的解题经验)
【答案】(1)EF=BE+DF;(2)不成立,证明见解析.
【解析】
(1)延长CB至M,使BM=DF,证明△ABM≌△ADF,再证明△EAH≌△EAF,可得出结论;
(2)在BE上截取BG,使BG=DF,连接AG.证明△ABG≌△ADF和△AEG≌△AEF,即可得出EF=BE-FD.
(1)EF=BE+DF;
如图,延长CB至M,使BM=DF,
∵∠ABC =∠D =90°,
∴∠1=∠D,
在△ABM与△ADF中,
,
∴△ABM≌△ADF(SAS).
∴AF=AM,∠2=∠3,
∵,
∴∠2+∠4=∠BAD=∠EAF,
∴∠3+∠4=∠EAF,即∠MAE=∠EAF.
在△AME与△AFE中,
,
∴△AME≌△AFE(SAS).
∴EF=ME,即EF=BE+BM.
∴EF=BE+DF.
(2)不成立,应该是EF=BE-FD.
证明:如图2,在BE上截取BG,使BG=DF,连接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵在△ABG与△ADF中,
,
∴△ABG≌△ADF(SAS).
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD,
∴∠GAE=∠EAF.
∵在△AEG与△AEF中,,
∴△AEG≌△AEF(SAS).
∴EG=EF,
∵EG=BE-BG,
∴EF=BE-FD.
练习册系列答案
相关题目