题目内容
【题目】如图,矩形ABCD中,AB=2,对角线AC、BD交于点O,∠AOD=120°,E为BD上任意点,P为AE中点,则PO+PB的最小值为 ( )
A.B.C.D.3
【答案】C
【解析】
设M、N分别为AB、AD的中点,则MN为△ABD的中位线,点P在MN上,作点O关于MN的对称点,连接,则即为PO+PB的最小值,易证△ABO为等边三角形,过点A作AH⊥BO于H,求出,然后利用勾股定理求出BO即可.
解:如图,设M、N分别为AB、AD的中点,则MN为△ABD的中位线,
∵P为AE中点,
∴点P在MN上,
作点O关于MN的对称点,连接,
∴,
∴PO+PB=,
∵四边形ABCD是矩形,∠AOD=120°,
∴OA=OB,∠AOB=60°,
∴△AOB为等边三角形,
∴AB=BO=4,
过点A作AH⊥BO于H,
∴,
∵MN∥BD,点H关于MN的对称点为A,点O关于MN的对称点为,
∴,且,
∴,
即PO+PB的最小值为,
故选:C.
练习册系列答案
相关题目