题目内容
【题目】某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度为_____.
【答案】11
【解析】
可以作BF⊥AE于F,在Rt△ABF中,运用勾股定理,根据各边的数量关系求得AF的长度,就可得到AE的长度;
接下来根据已知的AE的长度,在Rt△ACE中,运用三角函数求得CE的长度,进而可知CD的长度.
解:作BF⊥AE于F,如图所示:
则FE=BD=4米,DE=BF.
∵斜面AB的坡度i=1:2.4,
∴AF=2.4BF.
设BF=x米,则AF=2.4x米,
在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴DE=BF=5米,AF=12米,
∴AE=AF+FE=16米.
在Rt△ACE中,CE=AE=16米,
∴CD=CE-DE=16米-5米=11米.
练习册系列答案
相关题目
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y,的对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根据上表填空:
①抛物线与x轴的交点坐标是_________和_________;
②抛物线经过点(-3,_________);
(2)试确定抛物线y=ax2+bx+c的解析式.