题目内容

如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.
(1)求∠BAE的度数;
(2)求∠DAE的度数;
(3)探究:有同学认为,不论∠B,∠C的度数是多少,都有∠DAE=
1
2
(∠B-∠C)成立,你同意吗?你能说出成立或不成立的理由吗?
(1)∵在△ABC中,∠B=70°,∠C=30°,
∴∠BAC=180°-∠B-∠C=180°-70°-30°=80°,
∵AE平分∠BAC,
∴∠BAE=
1
2
∠BAC=
1
2
×80°=40°;

(2)∵AD⊥BC,∠B=70°,
∴∠BAD=90°-∠B=90°-70°=20°,
∵∠BAE=40°,
∴∠DAE=∠BAE-∠BAD=40°-20°=20°;

(3)成立.
∵AE平分∠BAC,
∴∠BAE=
1
2
(180°-∠B-∠C),
∵AD⊥BC,
∴∠BAD=90°-∠B,
∴∠DAE=∠BAE-∠BAD=
1
2
(180°-∠B-∠C)-90°+∠B=
1
2
(∠B-∠C).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网