题目内容
【题目】已知函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0, ),则下列关于函数g(x)=cos(2x﹣φ)的正确描述是( )
A.g(x)在区间[﹣ ]上的最小值为﹣1.
B.g(x)的图象可由函数f(x)向上平移2个单位,在向右平移 个单位得到.
C.g(x)的图象可由函数f(x)的图象先向左平移 个单位得到.
D.g(x)的图象可由函数f(x)的图象先向右平移 个单位得到.
【答案】C
【解析】解:∵函数f(x)=1+2cosxcos(x+3φ)是偶函数,其中φ∈(0, ), ∴3φ=π,φ= ,∴f(x)=1+2cosxcos(x+π)=1﹣2cos2x=﹣cos2x=cos(π﹣2x)=cos(2x﹣π),
∴函数g(x)=cos(2x﹣φ)=cos(2x﹣ ),
故函数f(x)的图象先向左平移 个单位得到y=cos[2(x+ )﹣π]=cos(2x﹣ )=g(x)的图象,
故选:C.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
【题目】某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).
运行区间 | 成人票价(元/张) | 学生票价(元/张) | ||
出发站 | 终点站 | 一等座 | 二等座 | 二等座 |
南靖 | 厦门 | 26 | 22 | 16 |
若师生均购买二等座票,则共需1020元.
(1)参加活动的教师有人,学生有人;
(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.
①求y关于x的函数关系式;
②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?
【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:
男生 | 女生 | 合计 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
总计 | 50 | 50 | 100 |
(Ⅰ)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
(Ⅱ)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中n=a+b+c+d)