题目内容
【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)已知AB=4,AE=3.求BF的长.
【答案】(1)证明见解析;(2)2.
【解析】
(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;
(2)证明△ODF∽△AEF,列比例式可得结论.
(1)证明:连接OD,AD,
∵AB是⊙O的直径,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD∥AC,
∵EF⊥AC,
∴OD⊥EF,
∴EF是⊙O的切线;
(2)解:∵OD∥AE,
∴△ODF∽△AEF,
∴,
∵AB=4,AE=3,
∴,
∴BF=2.
练习册系列答案
相关题目