题目内容
【题目】如图,在菱形ABCD中,P是对角线AC上任一点(不与A,C重合),连接BP,DP,过P作PE∥CD交AD于E,过P作PF∥AD交CD于F,连接EF.
(1)求证:△ABP≌△ADP;
(2)若BP=EF,求证:四边形EPFD是矩形.
【答案】
(1)证明:∵点P是菱形ABCD对角线AC上的一点,
∴∠DAP=∠PAB,AD=AB,
∵在△APB和△APD中, ,
∴△ABP≌△ADP(SAS)
(2)证明:∵PE∥CD,PF∥AD,
∴四边形EPFD是平行四边形,
由(1)得:△ABP≌△ADP,
∴BP=DP,
又∵BP=EF,
∴DP=EF,
∴四边形EPFD是矩形
【解析】(1)根据菱形的性质得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△ABP≌△ADP即可;(2)先证明四边形EPFD是平行四边形,再由全等三角形的性质得出BP=DP,由已知证出DP=EF,即可得出结论.
【考点精析】通过灵活运用菱形的性质和矩形的判定方法,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形即可以解答此题.
练习册系列答案
相关题目