题目内容
如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,
(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;(3分)
(2)若四边形ABCD的面积为20cm2,求翻转后纸片重叠部分的面积(即△ACE的面积).(3分)
【答案】
(1)以A、C、D、B′为顶点的四边形是矩形,理由见解析;(2)5cm2.
【解析】
试题分析:(1)以A、C、D、B′为顶点的四边形是矩形,根据平行四边形的性质以及已知条件求证出四边形ACDB′是平行四边形,进而求出四边形ACDB′是矩形;
(2)根据矩形的性质以及平行四边形的性质求出△ACD的面积,因为△AEC和△EDC可以看作是等底等高的三角形,所以S△AEC=S△ACD=5cm2.
试题解析:(1)以A、C、D、B′为顶点的四边形是矩形,理由如下:
∵四边形ABCD是平行四边形,∴AB平行且等于CD.
∵△AB′C是由△ABC翻折得到的,AB⊥AC,∴AB=AB′,点A、B、B′在同一条直线上.∴AB′∥CD.
∴四边形ACDB′是平行四边形.
∵B′C=BC=AD,∴四边形ACDB′是矩形.
(2)由四边形ACDB′是矩形,得AE=DE.
∵S▱ABCD=20cm2,∴S△ACD=10cm2.
∴S△AEC=S△ACD=5cm2.
考点:1.翻折变换(折叠问题);2.平行四边形的性质;3.矩形的判定.
练习册系列答案
相关题目
如图,在平行四边形ABCD中,AB=2
,AO=
,OB=
,则下列结论中不正确的是( )
2 |
3 |
5 |
A、AC⊥BD |
B、四边形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |