题目内容
【题目】如图,在边长为6的正方形ABCD的一边AB在线段MN上移动,连接MD,NC并延长交于点E,MN=18.
(1)当AM=4时,求CN长;
(2)若∠E=90°,求证AM=BN;
(3)△MNE能否为等腰三角形?若能,求出AM的长,若不能,请说明理由.
【答案】(1)10;(2)见解析;(3)△MNE能为等腰三角形,AM=6.
【解析】
(1)先求BN的长,由勾股定理可求CN的长;
(2)通过证明△ADM∽△BNC,可得,可求AM=6=BN;
(3)分三种情况讨论,由全等三角形的判定和性质和等腰三角形的性质可求解.
(1)∵四边形ABCD是正方形,
∴AB=AD=BC=6,∠DAB=∠ABC=90°,
∵AM=4,MN=18,AB=6,
∴BN=8,
在Rt△BCN中,CN==10;
(2)∵∠E=90°,
∴∠M+∠N=90°,且∠M+∠ADM=90°,
∴∠N=∠ADM,且∠DAM=∠CBN=90°,
∴△ADM∽△BNC,
∴,
∴
∴36=AM×BN=AM(12﹣AM)
∴AM=6,
∴BN=6,
∴AM=BN;
(3)△MNE能为等腰三角形,
若EM=EN,
∴∠M=∠N,且AD=BC,∠DAM=∠CBN,
∴△ADM≌△BCN(AAS)
∴AM=BN,
∵MN=AB+AM+BN=18,AB=6,
∴2AM=12,
∴AM=6;
若MN=EN=18,
∴∠M=∠E,
∵CD∥MN,
∴∠EDC=∠M=∠E,
∴EC=CD=6,
∴CN=12,
∴BN=,
∴AM=MN﹣AB﹣BN=12﹣6,
若MN=EM=18,
∴∠N=∠E,
∵CD∥MN,
∴∠ECD=∠N=∠E,
∴ED=CD=6,
∴DM=12,
∴AM=.
练习册系列答案
相关题目