题目内容
【题目】如图,在矩形ABCD(AD>AB)中,P为BC边上的一点,AP=AD,过点P作PE⊥PA交CD于E,连接AE并延长交BC的延长线于F.
(1)求证:△APE≌△ADE;
(2)若AB=3,CP=1,试求BP,CF的长;
(3)在(2)的条件下,连结PD,若点M为AP上的动点,N为AD延长线上的动点,且PM=DN,连结MN交PD于G,作MH⊥PD,垂足为H,试问当M、N在移动过程中,线段GH的长度是否发生变化?若变化,请说明理由,若不变,求出GH的长.
【答案】(1)详见解析;(2)BP=4,CF=4;(3)没有变化,GH=.
【解析】
(1)先判断出∠APE=∠D=90°,即可得出结论;
(2)先求出CD=AB=3,进而利用勾股定理求出CE=,DE=
,再△ABP∽△PCE,即可得出BP=4即可得出结论;
(3)先判断出MI=DN,进而判断出△MGH≌△NGD,最后用勾股定理即可得出结论.
(1)证明:
∵在矩形ABCD中,∠D=90°,又PE⊥PA,
∴∠APE=∠D=90°,
又∵AP=AD,AE=AE,
∴△APE≌△ADE
(2)由△APE≌△ADE得DE=PE
∵AB=3,
∴CD=AB=3
∴在Rt△PCE中,设CE=x,则PE=3﹣x,
∴(3﹣x)2=x2+12,解得x=
∴CE=,DE=
又∵∠B=∠BCD=∠APE=90°
∴∠PEC+∠CPE=90°,∠APB+∠CPE=90°
∴∠PEC=∠APB
∴△ABP∽△PCE
∴,得BP=4
∴在Rt△ABP中,AP=AD=5,
又∵AD∥BC
∴ ,
∴CF=4
(3)没有变化H
如图2,
作MI∥DN交PD于I
∵AD=AP,MI∥DN
∴∠ADP=∠APD,∠ADP=∠MIP
∴∠APD=∠MIP
∴MI=PM
又∵MH⊥PD
∴PH=HI
又∵PM=DN
∴MI=DN
∴∠MGI=∠DGN,∠IMG=∠DNG,
∴△MGH≌△NGD
∴GI=GD
∴GH=GI+IH=PD
∴在Rt△ABP中,,
∴GH=.
![](http://thumb.zyjl.cn/images/loading.gif)