题目内容

如图在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示点B在抛物线y=ax2+ax-2上.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)将三角板ABC绕顶点A逆时针方向旋转90°到达△AB′C′的位置,请写出点B′坐标
(1,-1)
(1,-1)
,点C′坐标
(2,1)
(2,1)
;判断点B′
,C′
(填“在”或“不”)在(2)中的抛物线上.
分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标;
(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;
(3)本题的关键是求出B′,C′两点的坐标.过点B′作B′M⊥y轴于点M,过点B作BN⊥y轴于点N,过点C″作C″P⊥y轴于点P.然后仿照(1)中求坐标时的方法,通过证Rt△AB′M≌Rt△BAN来得出B′的坐标.同理可得出C′的坐标.然后将两点的坐标分别代入抛物线的解析式中,进而可判断出两点是否在抛物线上.
解答:解:(1)过点B作BD⊥x轴,垂足为D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴点B的坐标为(-3,1);

(2)∵抛物线y=ax2+ax-2经过点B(-3,1),
∴1=9a-3a-2,解得a=
1
2

∴抛物线的解析式为:y=
1
2
x2+
1
2
x-2;

(3)如图,过点B′作B′M⊥y轴于点M,过点B作BN⊥y轴于点N,过点C″作C″P⊥y轴于点P,
在Rt△AB′M与Rt△BAN中,
∵∠AMB'=∠ANB=90°,∠AB′M=∠BAN=90°-∠B′AM,
∴∠ABN=∠B′AM,
在Rt△AB′M与Rt△BAN.
∠AB′M=∠BAN
AB=AB′
∠ABN=∠B′AM

∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得点C′(2,1);
将点B′、C′的坐标代入y=x2+x-2,可知点B′、C′在抛物线上.
故答案为:(1,-1),(2,1),在,在.
点评:本题考查的是二次函数综合题,重点考查的是待定系数法求二次函数解析式、三角形全等、图形旋转变换等重要知识点;综合性强,考查学生数形结合的数学思想方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网