题目内容
【题目】如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.
(1)求、的值;
(2)如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;
(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
【答案】(1),;(2)点的坐标为;(3)点的坐标为和
【解析】
试题分析: (1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
试题解析:.解:(1) 轴, , 抛物线对称轴为直线
点的坐标为
解得 或 (舍去),
(2)设点的坐标为 对称轴为直线点关于直线 的对称点 的坐标为.
直线 经过点 利用待定系数法可得直线的表达式为 .
因为点在上, 即点的坐标为
(3)存在点 满足题意.设点坐标为 ,则
作 垂足为
①点 在直线的左侧时,点的坐标为点的坐标为点的坐标为 在中, 时, 取最小值 .此时点的坐标为
②点在直线的右侧时,点的坐标为同理, 时, 取最小值 .此时点的坐标为
综上所述:满足题意得点的坐标为和
练习册系列答案
相关题目