题目内容
【题目】在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
【答案】45.8米
【解析】
通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EM,AN,进而计算出2号楼的高度DF即可.
解:过点E、F分别作EM⊥AB,FN⊥AB,垂足分别为M、N,
由题意得,EC=20,∠AEM=67°,∠AFN=40°,CB=DB=EM=FN,AB=60,
∴AM=AB﹣MB=60﹣20=40,
在Rt△AEM中,
∵tan∠AEM=,
∴EM==≈16.9,
在Rt△AFN中,
∵tan∠AFN=,
∴AN=tan40°×16.9≈14.2,
∴FD=NB=AB﹣AN=60﹣14.2=45.8,
答:2号楼的高度约为45.8米.
【题目】为了提高学生身体素质,某市中小学开展阳光健步走活动,某数学兴趣小组收集了某校名学生一天行走的步数并记录如下:
对这个数据按组距进行分组,并统计整理,绘制了如下尚不完整的统计图表.
调查结果统计表:
组别 | 步数分组 | 频数 |
请根据以上信息,解答下列问题:
(1)填空: ,
(2)请补全条形统计图.
(3)这名学生一天行走步数的众数落在 组.
(4)根据科学研究,初中生一天的健步行走应不少于步,若该校有名初中生,请你估计该校一天健步行走不少于步的学生人数,并根据上述数据,给校方提出合理化的建议(有利于健步行走的)