题目内容

【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据: ≈1.414, ≈1.732)

【答案】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.

则DE=BF=CH=10m,

在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,

∴DF=AF=70m.

在直角△CDE中,∵DE=10m,∠DCE=30°,

∴CE= = =10 (m),

∴BC=BE﹣CE=70﹣10 ≈70﹣17.32≈52.7(m).

答:障碍物B,C两点间的距离约为52.7m.


【解析】通过作垂线把特殊角放在直角三角形中,利用三角函数由边求边,再利用线段之差即可求出BC .
【考点精析】掌握关于仰角俯角问题是解答本题的根本,需要知道仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网