题目内容

【题目】如图所示,在中,AE的垂直平分线MNBE于点C,且,则的度数是______

【答案】

【解析】

首先连接AC,由AE的垂直平分线MNBE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=BAC+CAE=180°-4E+E=105°,继而求得答案.

连接AC
MNAE的垂直平分线,
AC=EC
∴∠CAE=E
AB+BC=BEBC+EC=BE
AB=EC=AC
∴∠B=ACB
∵∠ACB=CAE+E=2E
∴∠B=2E
∴∠BAC=180°-B-ACB=180°-4E
∵∠BAE=BAC+CAE=180°-4E+E=105°
解得:∠E=25°
∴∠B=2E=50°
故答案为:50°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网