搜索
题目内容
已知:如图,在四边形ABCD中,AC是对角线,AD=BC,∠1=∠2.求证:AB=CD.
试题答案
相关练习册答案
分析:
根据条件可以利用SAS证明△ADC≌△CBA,再根据全等三角形对应边相等可证出结论.
解答:
证明:在△ADC和△CBA中:
AC=AC
∠1=∠2
AD=CB
,
∴△ADC≌△CBA(SAS),
∴AB=CD.
点评:
此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
练习册系列答案
小状元金考卷全能提优系列答案
小学毕业班升学总复习系列答案
天利38套小学总复习专项测练系列答案
金太阳教育金太阳考案系列答案
追击小考小学毕业升学总复习系列答案
一线名师云南密卷系列答案
化学教与学系列答案
四川新教材新中考系列答案
系统分类总复习系列答案
新课标阶梯阅读训练系列答案
相关题目
39、已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O.求证:O是BD的中点.
21、已知,如图,在四边形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
请设计两种不同的分法,将四边形ABCD分割成四个三角形,使得分割成的每个三角形都是等腰三角形.画法要求如下:
(1)两种分法只要有一条分割线段位置不同,就认为是两种不同的分法;
(2)画图工具不限,但要求画出分割线段;
(3)标出能够说明不同分法所得三角形的内角度数,例如样图;
(4)不要求写出画法,不要求证明.
已知:如图,在四边形ABCD中,AD∥BC,AC⊥BC,点E、F分别是边AB、CD的中点,AF=CE.求证:AD=BC.
已知:如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD
2
+CD
2
=2AB
2
.
(1)求证:AB=BC;
(2)当BE⊥AD于E时,试证明:BE=AE+CD.
已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案