题目内容

已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
分析:连接AC,作GN∥AD交AC于G,连接MG,根据中位线定理证明MG∥BC,且GM=
1
2
BC,根据AD=BC证明GM=GN,可得∠GNM=∠GMN,根据平行线性质可得:∠GMF=∠F,∠GNM=∠DEN从而得出∠DEN=∠F.
解答:证明:连接AC,作GN∥AD交AC于G,连接MG.
∵N是CD的中点,且NG∥AD,
∴NG=
1
2
AD,G是AC的中点,
又∵M是AB的中点,
∴MG∥BC,且MG=
1
2
BC.
∵AD=BC,
∴NG=GM,
△GNM为等腰三角形,
∴∠GNM=∠GMN,
∵GM∥BF,
∴∠GMF=∠F,
∵GN∥AD,
∴∠GNM=∠DEN,
∴∠DEN=∠F.
点评:此题主要考查平行线性质,以及三角形中位线定理,关键是证明△GNM为等腰三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网