题目内容
【题目】已知ABC为等边三角形,点D、E分别在直线AB、BC上,且AD=BE.
(1)如图1,若点D、E分别是AB、CB边上的点,连接AE、CD交于点F,过点E作∠AEG=60°,使EG=AE,连接GD,则∠AFD= (填度数);
(2)在(1)的条件下,猜想DG与CE存在什么关系,并证明;
(3)如图2,若点D、E分别是BA、CB延长线上的点,(2)中结论是否仍然成立?请给出判断并证明.
【答案】(1)∠AFD= 60°(2)DG=CE,DG//CE;(3)详见解析
【解析】
(1) 证明△ABE≌△CAD(SAS),可得 ∠BAE=∠ACD,继而根据等边三角形的内角为60度以及三角形外角的性质即可求得答案;
(2)由(1)∠AFD=60°,根据∠AEG=60°,可得GE//CD ,继而根据GE=AE=CD,可得四边形GECD是平行四边形,根据平行四边形的性质即可得DG=CE,DG//CE;
(3)延长EA交CD于点F,先证明△ACD≌△BAE,根据全等三角形的性质可得 ∠ACD=∠BAE, CD=AE,继而根据三角形外角的性质可得到∠EFC= 60°,从而得∠EFC=∠GEF,得到GE//CD,继而证明四边形GECD是平行四边形 ,根据平行四边形的性质即可得到DG=CE,DG//CE.
(1) ∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴∠BAE=∠ACD,
∵∠BAE+∠EAC=∠BAC=60°,
∴∠ACD+∠EAC=60°,
∴∠AFD=∠ACD+∠EAC=60°,
故答案为:60° ;
(2)DG=CE,DG//CE,理由如下:
∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
∴AE=CD,∠BAE=∠ACD,
∵∠BAE+∠EAC=∠BAC=60°,
∴∠ACD+∠EAC=60°,
∴∠AFD=∠ACD+∠EAC=60°,
又∵∠AEG=60°,
∴∠AFD=∠AEG,
∴GE//CD ,
∵GE=AE=CD,
∴四边形GECD是平行四边形,
∴DG=CE,DG//CE;
(3)仍然成立
延长EA交CD于点F,
∵△ABC为等边三角形,
∴AC=AB,∠BAC=∠ABC=60°,
∴∠DAC=∠ABE=120°,
在△ACD和△BAE中,
,
∴△ACD≌△BAE(SAS),
∴∠ACD=∠BAE, CD=AE,
∴∠EFC=∠DAF+∠BDC=∠BAE +∠AEB=∠ABC= 60°,
∴∠EFC=∠GEF,
∴GE//CD,
∵GE=AE=CD,
∴四边形GECD是平行四边形 ,
∴DG=CE,DG//CE.