题目内容

【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;

(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.

(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.

【答案】
(1)

证明:如图1,分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD,再分别以A、C为圆心,以AC为半径画弧,交于点E,连接AE、CE,则△ABD、△ACE就是所求作的等边三角形;

证明:如图1,∵△ABD和△ACE都是等边三角形,

∴AD=AB,AC=AE,∠DAB=∠EAC=60°,

∴∠DAC=∠BAE,

∴△DAC≌△BAE(SAS),

∴BE=CD


(2)

解:如图2,过A作AE⊥AD,使AD=AE=3,连接DE、CE,

由勾股定理得:DE= =3

∴∠EDA=45°,

∵∠ADC=45°,

∴∠EDC=∠EDA+∠ADC=90°,

∵∠ACB=∠ABC=45°,

∴∠CAB=90°,

∴∠CAB+∠DAC=∠EAD+∠DAC,

即∠EAC=∠DAB,

∵AE=AD,AC=AB,

∴△DAB≌△EAC(SAS),

∴EC=BD,

在Rt△DCE中,EC= = =

∴BD=EC=


(3)

解:如图3,作直角三角形DAE,使得∠DAE=90°,

∠EDA=∠ABC,连接EC,

容易得到△DAE∽△BAC,

,即

∵∠DAE=∠BAC=90°,

∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,

∴△EAC∽△DAB,

在△DCE中,∠ADC=∠ACB,

∠EDA=∠ABC,

∴∠EDC=90°,

,AD=12,

∴AE=9,∠DAE=90°,

∴DE= =15,

CE= =5

由△EAC∽△DAB,

BD=


【解析】(1)作图:分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD;再分别以A、C为圆心,以AC为半径画弧,交于E,连接AE、CE,则△ABD、△ACE就是所求作的等边三角形;
利用等边三角形的性质证明△DAC≌△BAE可以得出结论;(2)如图2,作辅助线后,证明△DAB≌△EAC得:EC=BD,在Rt△DCE中,利用勾股定理求EC的长,则BD=EC= ;(3)如图3,构建直角△DAE,根据同角的三角函数求AE和DE的长,从而可以得到EC的长,利用三角形相似可以得BD的长.
【考点精析】根据题目的已知条件,利用相似三角形的应用的相关知识可以得到问题的答案,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网