题目内容
【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;
(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.
(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.
【答案】
(1)
证明:如图1,分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD,再分别以A、C为圆心,以AC为半径画弧,交于点E,连接AE、CE,则△ABD、△ACE就是所求作的等边三角形;
证明:如图1,∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
∴△DAC≌△BAE(SAS),
∴BE=CD
(2)
解:如图2,过A作AE⊥AD,使AD=AE=3,连接DE、CE,
由勾股定理得:DE= =3 ,
∴∠EDA=45°,
∵∠ADC=45°,
∴∠EDC=∠EDA+∠ADC=90°,
∵∠ACB=∠ABC=45°,
∴∠CAB=90°,
∴∠CAB+∠DAC=∠EAD+∠DAC,
即∠EAC=∠DAB,
∵AE=AD,AC=AB,
∴△DAB≌△EAC(SAS),
∴EC=BD,
在Rt△DCE中,EC= = = ,
∴BD=EC=
(3)
解:如图3,作直角三角形DAE,使得∠DAE=90°,
∠EDA=∠ABC,连接EC,
容易得到△DAE∽△BAC,
∴ ,即 ,
∵∠DAE=∠BAC=90°,
∴∠DAE+∠DAC=∠BAC+∠DAC,即∠EAC=∠DAB,
∴△EAC∽△DAB,
∴ ,
在△DCE中,∠ADC=∠ACB,
∠EDA=∠ABC,
∴∠EDC=90°,
∵ ,AD=12,
∴AE=9,∠DAE=90°,
∴DE= =15,
CE= =5 ,
由△EAC∽△DAB,
∴
BD= .
【解析】(1)作图:分别以点A、B为圆心,以AB为半径画弧,交于点D,连接AD、BD;再分别以A、C为圆心,以AC为半径画弧,交于E,连接AE、CE,则△ABD、△ACE就是所求作的等边三角形;
利用等边三角形的性质证明△DAC≌△BAE可以得出结论;(2)如图2,作辅助线后,证明△DAB≌△EAC得:EC=BD,在Rt△DCE中,利用勾股定理求EC的长,则BD=EC= ;(3)如图3,构建直角△DAE,根据同角的三角函数求AE和DE的长,从而可以得到EC的长,利用三角形相似可以得BD的长.
【考点精析】根据题目的已知条件,利用相似三角形的应用的相关知识可以得到问题的答案,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.
【题目】小明平时喜欢玩“QQ农场”游戏,本学期初二年级数学备课组组织了几次数学反馈性测试,小明的数学成绩如下表:
月份x(月) | 9 | 10 | 11 | 12 | … |
成绩y(分) | 90 | 80 | 70 | 60 | … |
(1)以月份为x轴,成绩为y轴,根据上表提供的数据在下列直角坐标系中描点;
(2)观察①中所描点的位置关系,照这样的发展趋势,猜想y与x之间的函数关系,并求出所猜想的函数表达式;
(3)若小明继续沉溺于“QQ农场”游戏,照这样的发展趋势,请你估计元月份的期末考试中小明的数学成绩,并用一句话对小明提出一些建议.