题目内容
【题目】钓鱼岛历来是中国领土,以它为圆心在周围12海里范围内均属于禁区,不允许它国船只进入,如图,今有一中国海监船在位于钓鱼岛A正南方距岛60海里的B处海域巡逻,值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警告,并沿北偏西30°的方向以12节的速度前往拦截,期间多次发出警告,2小时候海监船到达D处,与此同时日本渔船到达E处,此时海监船再次发出严重警告.
(1)当日本渔船受到严重警告信号后,必须沿北偏东转向多少度航行,才能恰好避免进入钓鱼岛12海里禁区?
(2)当日本渔船不听严重警告信号,仍按原速度,原方向继续前进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处强制拦截渔船,问海监船能否比日本渔船先到达F处?(注:①中国海监船的最大航速为18节,1节=1海里/小时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31, ≈1.4, ≈1.7)
【答案】
(1)
解:过点E作圆A的切线EN,连接AN,则AN⊥EN,
由题意得,CE=9×2=18海里,则AE=AC﹣CE=52﹣18=34海里,
∵sin∠AEN= ≈0.35,
∴∠AEN=20.5°,
∴∠NEM=69.5°,
即必须沿北偏东至少转向69.5°航行,才能恰好避免进入钓鱼岛12海里禁区
(2)
解:过点D作DH⊥AB于点H,
由题意得,BD=2×12=24海里,
在Rt△DBH中,DH= BD=12海里,BH=12 海里,
∵AF=12海里,
∴DH=AF,
∴DF⊥AF,
此时海监船以最大航速行驶,
海监船到达点F的时间为: = = ≈2.2小时;
渔船到达点F的时间为: = ≈2.4小时,
∵2.2<2.4,
∴海监船比日本渔船先到达F处.
【解析】(1)过点E作圆A的切线EN,求出∠AEN的度数即可得出答案;(2)分别求出渔船、海监船到达点F的时间,然后比较可作出判断.
【考点精析】解答此题的关键在于理解关于方向角问题的相关知识,掌握指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.