题目内容
【题目】如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
【答案】(1)旋转中心坐标是,旋转角是;(2)见解析;(3)见解析
【解析】
(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
(2)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
(3)利用面积,根据正方形CC1C2C3的面积等于正方形AA1A2B的面积加上△ABC的面积的4倍,列式计算即可得证.
(1)旋转中心坐标是,旋转角是
(2)画出图形如图所示.
(3)由旋转的过程可知,四边形和四边形是正方形.
∵,
∴,
,
∴.
即中,,
练习册系列答案
相关题目