题目内容
【题目】已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).
(1)求此抛物线的解析式及顶点坐标;
(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;
(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.
【答案】(1) 抛物线解析式为y=x2﹣4x+3, 顶点坐标为(2,﹣1);(2) ﹣1≤x<8;(3) m的值为3+或1+
【解析】
(1)利用待定系数法求抛物线解析式;然后把一般式配成顶点式得到抛物线的顶点坐标;
(2)先计算出当x=﹣1和x=3对应的函数值,然后根据二次函数的性质解决问题;
(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,利用二次函数的性质,当2+m>5,此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,;设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,利用二次函数的性质得到2﹣m<1,此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,然后分别解关于m的方程即可.
解:(1)把(1,0),(0,3)代入y=x2+bx+c得 解得
∴抛物线解析式为y=x2﹣4x+3;
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线的顶点坐标为(2,﹣1);
(2)当x=﹣1时,y=x2﹣4x+3=8,
当x=3时,y=x2﹣4x+3=0,
∴当﹣1≤x≤3时,函数值y的取值范围为﹣1≤x<8;
(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,
∵当自变量x满足1≤x≤5时,y的最小值为5,
∴2+m>5,即m>3,
此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,解得m1=3+,m2=3﹣(舍去),
设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,
∵当自变量x满足1≤x≤5时,y的最小值为5,
∴2﹣m<1,即m>1,
此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m1=1+,m2=1﹣(舍去),
综上所述,m的值为3+或1+.