题目内容
【题目】水平地面上有一个圆形水池,直径AB长为6m,长为m的一旗杆AC垂直于地面(AC与地面上所有直线都垂直).
(1)若P为弧AB的中点,试说明∠BPC=90°
(2)若P弧AB为上任意一点(不与A、B重合),∠BPC=90°还成立吗,为什么?
(3)弧AB上是否存在点P使△PAB与△PAC相似,若存在求的值,不存在,说明理由.
【答案】(1)见解析;(2)成立,理由见解析;(3)存在,或
【解析】
(1)根据圆周角定理可得∠APB=90°,根据线面垂直定理可得PB⊥面PAC,继而求证;
(2)成立,根据圆周角定理可得∠APB=90°,根据线面垂直定理可得PB⊥面PAC,继而得出结论;
(3)分两种情况讨论,当△PAB∽△APC时,,进而求出PB的长,根据勾股定理,求出PA的长,即可求的值;当△PAB∽△ACP时, 整理得:,
由勾股定理可得:,可列关于PB的方程,解方程舍去负数即可得PB,进而得PA的值,从而可求的值.
(1)∵AB是⊙O的直径
∴∠APB=90°
∴BP⊥AP
∵CA⊥面APB
∴CA⊥BP
∴BP⊥面PAC
∴BP⊥PC
∴∠BPC=90°
(2)∠BPC=90°成立.
理由:∵AB是⊙O的直径
∴∠APB=90°
∴BP⊥AP
∵CA⊥面APB
∴CA⊥BP
∴BP⊥面PAC
∴BP⊥PC
∴∠BPC=90°
(3)存在,
当△PAB∽△APC时,,
∵AC=,
∴,
∴,
又∵AB=6,∠APB=90°,
由勾股定理可得:
,
;
当△PAB∽△ACP时, ,
即
∵
∴
∵在Rt△PAB中,AB=6,
由勾股定理可得:
∴
解得:PB=或PB=(舍去)
∴
∴
∴
综上所述,弧AB上存在点P使△PAB与△PAC相似,=或.
【题目】如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.
小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.
下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
AP/cm | 0 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PC/cm | 0 | 1.21 | 2.09 | 2.69 | m | 2.82 | 0 |
AC/cm | 0 | 0.87 | 1.57 | 2.20 | 2.83 | 3.61 | 6.00 |
①经测量m的值是 (保留一位小数).
②在AP,PC,AC的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).