题目内容
【题目】某公司营销两种产品,根据市场调研,确定两条信息:
信息1:销售种产品所获利润(万元)与所销售产品 (吨)之间存在二次函数关系,如图所示
信息2:销售种产品所获利润(万元)与销售产品(吨)之间存在正比例函数关系
根据以上信息,解答下列问题:
(1)求二次函数的表达式;
(2)该公司准备购进两种产品共10吨,请设计一个营销方案使销售两种产品获得的利润之和最大,最大利润是多少万元?
【答案】(1);(2)购进A产品6吨,购进B产品4吨,利润之和最大,最大为6.6万元
【解析】
(1)由抛物线过原点可设y与x间的函数关系式为y=ax2+bx+c,再利用待定系数法求解可得;
(2)设购进A产品m吨,购进B产品(10m)吨,销售A、B两种产品获得的利润之和为W元,根据:A产品利润+B产品利润=总利润可得W=0.1m2+1.5m+0.3(10m),配方后根据二次函数的性质即可知最值情况.
解:(1)设二次函数的表达式为y=ax2+bx+c,
由图象,得抛物线过点(0,0),(1,1.4),(3,3.6),
将三点的坐标代入表达式,
得,
解得
所以二次函数的表达式为y=0.1x2+1.5x;
(2)设购进A产品m吨,购进B产品(10m)吨,销售A、B两种产品获得的利润之和为W元,
则W=0.1m2+1.5m+0.3(10m),
=0.1m2+1.2m+3,
=0.1(m6)2+6.6,
∵0.1<0,
∴∴当m=6时,W取得最大值,最大值为6.6万元,
答:购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.
练习册系列答案
相关题目