题目内容
【题目】已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形
(1)求证:△DFB是等腰三角形;
(2)若DA=AF,求证:CF⊥AB.
【答案】(1)证明详见解析;(2)证明详见解析.
【解析】
试题分析:(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;
(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM=a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.
试题解析:(1)∵AB是⊙O直径,
∴∠ACB=90°,
∵△AEF为等边三角形,
∴∠CAB=∠EFA=60°,
∴∠B=30°,
∵∠EFA=∠B+∠FDB,
∴∠B=∠FDB=30°,
∴△DFB是等腰三角形;
(2)过点A作AM⊥DF于点M,设AF=2a,
∵△AEF是等边三角形,∴FM=EM=a,AM=a,
在Rt△DAM中,AD=AF=a,AM=a,
∴DM=5a,∴DF=BF=6a,
∴AB=AF+BF=8a,
在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,
∵AE=EF=AF=2a,
∴CE=AC﹣AE=2a,
∴∠ECF=∠EFC,
∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,
∴∠AFC=∠AFE+∠EFC=60°+30°=90°,
∴CF⊥AB.
练习册系列答案
相关题目