题目内容
如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

【答案】分析:(1)根据一元二次方程解法得出A,B两点的坐标,再利用交点式求出二次函数解析式;
(2)首先判定△MNA∽△BCA.得出
,进而得出函数的最值;
(3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案.
解答:
解:(1)∵x2-4x-12=0,
∴x1=-2,x2=6.
∴A(-2,0),B(6,0),
又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x-6),
将点C的坐标代入,求得
,
∴抛物线的解析式为
;
(2)设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)).
∵点A的坐标为(-2,0),点B的坐标为(6,0),
∴AB=8,AM=m+2,
∵MN∥BC,∴△MNA∽△BCA.
∴
,
∴
,
∴
,
∴
,
=
,
=
.
∴当m=2时,S△CMN有最大值4.
此时,点M的坐标为(2,0);
(3)∵点D(4,k)在抛物线
上,
∴当x=4时,k=-4,
∴点D的坐标是(4,-4).
①如图(2),当AF为平行四边形的边时,AF平行且等于DE,
∵D(4,-4),∴DE=4.
∴F1(-6,0),F2(2,0),
②如图(3),当AF为平行四边形的对角线时,设F(n,0),
∵点A的坐标为(-2,0),
则平行四边形的对称中心的横坐标为:
,
∴平行四边形的对称中心坐标为(
,0),
∵D(4,-4),
∴E'的横坐标为:
-4+
=n-6,
E'的纵坐标为:4,
∴E'的坐标为(n-6,4).
把E'(n-6,4)代入
,得n2-16n+36=0.
解得
.
,
,
综上所述F1(-6,0),F2(2,0),F3(8-2
,0),F4(8+2
,0).
点评:此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.
(2)首先判定△MNA∽△BCA.得出

(3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案.
解答:

∴x1=-2,x2=6.
∴A(-2,0),B(6,0),
又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x-6),
将点C的坐标代入,求得

∴抛物线的解析式为

(2)设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)).
∵点A的坐标为(-2,0),点B的坐标为(6,0),

∴AB=8,AM=m+2,
∵MN∥BC,∴△MNA∽△BCA.
∴

∴

∴

∴

=

=

∴当m=2时,S△CMN有最大值4.
此时,点M的坐标为(2,0);
(3)∵点D(4,k)在抛物线


∴当x=4时,k=-4,
∴点D的坐标是(4,-4).
①如图(2),当AF为平行四边形的边时,AF平行且等于DE,
∵D(4,-4),∴DE=4.
∴F1(-6,0),F2(2,0),
②如图(3),当AF为平行四边形的对角线时,设F(n,0),
∵点A的坐标为(-2,0),
则平行四边形的对称中心的横坐标为:

∴平行四边形的对称中心坐标为(

∵D(4,-4),
∴E'的横坐标为:


E'的纵坐标为:4,
∴E'的坐标为(n-6,4).
把E'(n-6,4)代入

解得



综上所述F1(-6,0),F2(2,0),F3(8-2


点评:此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型,特别注意利用数形结合是这部分考查的重点,也是难点,同学们应重点掌握.

练习册系列答案
相关题目