题目内容
【题目】已知二次函数的与的部分对应值如表:
0 | 2 | 3 | 4 | ||
5 | 0 | 0 |
下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④3是方程的一个根;⑤若,是抛物线上两点,则,其中正确的个数是( )
A.1B.2C.3D.4
【答案】B
【解析】
先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的增减性可对⑤进行判断.
解:设抛物线解析式为y=ax(x-4),
把(-1,5)代入得5=a×(-1)×(-1-4),解得a=1,
∴抛物线解析式为y=x2-4x,所以①正确;
抛物线的对称轴为直线x=2,所以②正确;
∵抛物线与x轴的交点坐标为(0,0),(4,0),
∴当0<x<4时,y<0,所以③错误;
∵抛物线与x轴的交点坐标为(0,0),(4,0),
∴3不是方程的一个根④错误;
若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误,
则选B.
练习册系列答案
相关题目