题目内容
【题目】已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.
【答案】见解析
【解析】
由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,可得∠AEC=∠DCE=90°,即可证得:四边形ADCE为矩形;
∵在△ABC中,AB=AC,AD是BC边的中线,
∴AD⊥BC,∠BAD=∠CAD,
∴∠ADC=90°,
∵AN为△ABC的外角∠CAM的平分线,
∴∠MAN=∠CAN,
∴∠BAD+∠CAD+∠MAN+∠CAN=180°,
∴∠DAE=∠CAD+∠CAN=×180°=90°,
∵CE//AD,
∴CE⊥AN,
∴∠AEC=∠DCE=90°,
∴四边形ADCE为矩形.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】某电器商城销售、
两种型号的电风扇,进价分别为
元、
元,下表是近两周的销售情况:
销售时段 | 销售型号 | 销售收入 | |
|
| ||
第一周 |
|
|
|
第二周 |
|
|
|
(1)求、
两种型号的电风扇的销售单价;
(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共
台,求
种型号的电风扇最多能采购多少台?
(3)在(2)的条件下商城销售完这台电风能否实现利润超过
元的目标?若能,请给出相应的采购方案;若不能,请说明理由.