题目内容
【题目】如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为( )
A. B. C. 2D. 3
【答案】A
【解析】
根据全等三角形的判定先求证△ADO≌△DEH,然后再根据等腰直角三角形中等边对等角求出∠ECH=45°,再根据点在一次函数上运动,作OE′⊥CE,求出OE′即为OE的最小值.
解:如图,作EH⊥x轴于H,连接CE.
∵∠AOD=∠ADE=∠EHD=90°,
∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,
∴∠ADO=∠DEH,
∵AD=DE,
∴△ADO≌△DEH(AAS),
∴OA=DH=OC,OD=EH,
∴OD=CH=EH,
∴∠ECH=45°,
∴点E在直线y=x﹣3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,
∵OC=3,
∴OE′= ,
∴OE的最小值为 .
故选:A.
练习册系列答案
相关题目