题目内容

已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,
(1)如果动点E、F满足BE=CF(如图):
①写出所有以点E或F为顶点的全等三角形(不得添加辅助线);
②证明:AE⊥BF;
(2)如果动点E、F满足BE=OF(如图),问当AE⊥BF时,点E在什么位置,并证明你的结论.
(1)①△ABE≌△BCF, △AOE≌△BOF, △ABF≌△DEA
②见解析
(2)见解析
(1)①根据正方形性质及BE=CF即可得出全等的三角形,②根据全等三角形及正方形的性质即可得出结论。
(2)根据正方形性质及已知条件由ASA得出△ABE≌△BCF,即可由等量代换得证。
(1)①△ABE≌△BCF, △AOE≌△BOF, △ABF≌△DEA
②证明:如图,延长AE 交BF 于点M,

∵ABCD 是正方形,∴AB=BC, ∠BCF=∠ABE。
∵BE=CF,∴△ABE≌△BCF(SAS)。∴∠CBF=∠BAE
∵∠ABE+∠EBM+∠CBF=90°,
∴∠ABE+∠EBM+∠BAE =90°。
∴∠AMB=90°。∴AE⊥BF。
(2)点E 是OB 的中点。证明如下:
∵ABCD 是正方形,∴AB=BC, ∠BCF=∠ABE。
∵AE⊥BF,∴∠AMB=90°。∴∠ABE+∠EBM+∠BAE =90°。
∴∠ABE+∠EBM+∠CBF=90°。∴∠CBF=∠BAE。∴△ABE≌△BCF(ASA)。
∴BE=CF。
∵BE=OF,∴CF=OF。
又∵OB=OC,∴BE=OE。∴点E是OB 的中点。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网